Une suite pour la Vie

(doublée d’une correspondance passionnante avec Dean Hickerson)

 

 

Une suite de nombres en rapport avec le Jeu de la Vie : celle de ceux qui disparaissent quand on leur soumet la loi d’airain des naissances et des morts. Pour trouver ces nombres, il faut d’abord en fixer l’aspect. Voici l’alphabet retenu, il se compose des dix chiffres obtenus en noircissant les cases ad hoc d’un rectangle 3 x 5 :

 

xxx    x    xxx    xxx    x x    xxx    xxx    xxx    xxx    xxx

x x    x      x      x    x x    x      x        x    x x    x x

x x    x    xxx    xxx    xxx    xxx    xxx      x    xxx    xxx

x x    x    x        x      x      x    x x      x    x x      x

xxx    x    xxx    xxx      x    xxx    xxx      x    xxx    xxx

 

 0     1     2      3      4      5      6      7      8      9

 

On séparera d’une case les chiffres à l’intérieur des nombres, puis on les injectera dans une applet du type de celle qui figure en bas de page. Le résultat, après quelques générations, est toujours l’un des trois suivants :

 

- disparition de la population de départ ;

- croissance infinie (par dissémination de vaisseaux, par exemple) ;

- stabilisation.

 

Pour le cas qui nous occupe – le devenir des nombres –, tout dépend de la typographie utilisée, bien sûr. Nous avons dessiné les chiffres du haut de la manière la plus courante possible (cf. les divers affichages digitaux, pendulettes, réveils-matin, lecteurs de DVD, etc.) – mais d’autres façons de faire sont envisageables, lesquelles produiront d’autres résultats. Voici plusieurs dessins du 1, du 4 ou du 7 (nous avons retenu le 1b, le 4c, le 7b) :

 

xx       x       x        x        x x      xxx    xxx

 x       x       x x      x        x x        x      x

 x       x       xxx      x x      xxx       xx      x

 x       x         x      xxx        x        x      x

xxx      x         x        x        x        x      x

 

1a      1b        4a       4b       4c       7a     7b

 

 

Les nombres qui disparaissent selon la graphie fixée tout en haut, sont :

 

8,10,11,14,18,20,31,48,50,81,83,87,88,101,118,122,127,144,148,155,157,161,174,181,188,191,199,202,205,206,208,218,221,228,245, ...

 

Cette suite est-elle finie ? Il est en effet concevable qu’elle s’arrête à partir d’un certain nombre, très grand, lequel ferait « exploser » la population initiale de points, envoyant des vaisseaux dans tous les sens, produisant des kyrielles de clignotants ou de blocs fixes – mais ne s’effondrant plus jamais sur elle-même...

 

Dean Hickerson, de la liste SeqFan, a montré qu’il n’en est rien et qu’il y aura toujours moyen de prolonger la suite et de trouver des nombres qui disparaissent.

 

Eric Angelini asked:

 

> If we represent the ten digits like this (in a 5x3 box):

...

> ... the integers which disappear in the "Game of Life" are listed hereafter

> (two digits, inside an integer, are always separated by one space):

>

> 8,10,14,18,20,31,48,50,81,83,87,88,101,118,122,127,144,148,155,157,161,174,

> 181,188,191,199...

> 

> Is the sequence finite?

 

No. For example, numbers of the form  1811...1181  all die in 5 generations.

 

Just to clarify, we're using a variable width font, with "1" being narrower

than the other digits; e.g. 1811181 is:

 

    o ooo o o o ooo o

    o o o o o o o o o

    o ooo o o o ooo o

    o o o o o o o o o

    o ooo o o o ooo o

 

But even if we use a fixed-width font, the same numbers (starting with

181181) still die, in 15 gens:

 

    o  ooo  o   o   o  ooo  o

    o  o o  o   o   o  o o  o

    o  ooo  o   o   o  ooo  o

    o  o o  o   o   o  o o  o

    o  ooo  o   o   o  ooo  o

 

(Of course, I don't think this sequence should be added to OEIS, since

it depends not only on base-10 representations, but also on a specific

way of representing digits as Life patterns.)

 

Dean Hickerson

 

De même que les nombres découverts par Dean (placer autant de « 1 » qu’on veut entre les bornes 1811 et 1181), il y a ceux qui commencent par « 1 » et qu’on fait suivre d’autant de « 4 » que l’on veut (14, 144, 1444, 14444...) – ils s’évanouissent aussi, mais en 9 générations à chaque fois.

 

 

L’applet utilisée pour produire image et suite est ici :

 

http://www.math.com/students/wonders/life/life.html

 

 

 

 

 

[Dernière minute :

 Jonathan Post vient de m’écrire ceci en privé (7 février 2007)

 

(...)

By the way, Eric, I first did the lower end of your sequence 39 years

ago in 1968 at Caltech in a language called CITRAN (derived from JOSS)

running on dumb terminals connected to an IBM 7090/7094 which did ALL

the computing for all departments of Caltech plus NASA JPL!

(...)

 

... les beaux esprits se rencontrent !]

 

[Dernière seconde :

 Dean Hickerson revient sur la question de la durée de vie des nombres-qui-meurent :

 

Eric, I've thought some more about about numbers whose corresponding Life

patterns die. The numbers listed on your web page all die within

65 generations. I wondered if there were numbers which take longer than

that. After quite a bit of experimentation, I found that there's no limit

on the length of time before such a pattern dies. In particular, the

pattern for 1666225099901176 produces 2 gliders, which annihilate each

other in generation 77:

 

    o ooo ooo ooo ooo ooo ooo ooo ooo ooo ooo ooo o o ooo ooo

    o o   o   o     o   o o   o o o o o o o o o o o o   o o

    o ooo ooo ooo ooo ooo ooo o o ooo ooo ooo o o o o   o ooo

    o o o o o o o o   o     o o o   o   o   o o o o o   o o o

    o ooo ooo ooo ooo ooo ooo ooo ooo ooo ooo ooo o o   o ooo

 

If you change the '999' to a longer string of '9's, the lifetime increases;

each additional '9' increases it by 8 generations.

 

I've tried to find a more interesting example, based on a decaying fuse

formed by a string of '2's.  But the best I've found doesn't quite die;

it ends up with a population of 44. This happens for numbers of the

form 19900222...22200661, where the number of '2's a multiple of 3 and

>= 9.  (If you add one more '2', you end up with two blocks and two

period-3 pulsars.)

 

    o ooo ooo ooo ooo ooo ooo ooo ooo ooo ooo ooo ooo ooo ooo ooo ooo ooo o

    o o o o o o o o o   o   o   o   o   o   o   o   o   o o o o o o   o   o

    o ooo ooo o o o o ooo ooo ooo ooo ooo ooo ooo ooo ooo o o o o ooo ooo o

    o   o   o o o o o o   o   o   o   o   o   o   o   o   o o o o o o o o o

    o ooo ooo ooo ooo ooo ooo ooo ooo ooo ooo ooo ooo ooo ooo ooo ooo ooo o

 

There's probably some way to modify the ends to make this die, but I

haven't found it.

 

You mentioned:

 

> (try 137, in the applet, it's fun !)

 

It's strange that a heavyweight spaceship shows up so soon. Lightweight

and middleweight spaceships are much more common. Most of the ones I've

seen come from large messy patterns (e.g. 1044, 2310, 2848), but 3207

produces a LWSS by itself, and 12739 makes a MWSS plus a boat, a beehive,

and a glider.

 

6854 produces a bunch of stuff, including a pentadecathlon (period 15).

 

I wonder what the smallest number is whose pattern's population goes to

infinity...

 

Dean Hickerson

 

À suivre ?]

 

----------------

 

[Oui, à suivre, effectivement ; Dean vient de m’envoyer encore ceci :

 

I wrote:

 

> I've tried to find a more interesting example, based on a decaying fuse

> formed by a string of '2's.  But the best I've found doesn't quite die;

> it ends up with a population of 44.  This happens for numbers of the

> form 19900222...22200661, where the number of '2's a multiple of 3 and

> >= 9.

 

It took a few days of searching, but I finally found a way to modify the

ends so the pattern dies.  Try any number of the form

 

    1125344743766189077900222...2220066748424

 

where the number of 2's in the middle is divisible by 3 and >= 9.  With

9 2's, this dies in 191 gens.  Each additional group of 3 2's adds 18 to

the lifetime.

 

The MWSS that's formed at the left end of that pattern can be used in

other patterns that take a long time to die.  For example, try

 

    1125344743766111...11162

 

where the number of 1's in the middle is at least 2.  This forms a MWSS

at the left end, which destroys a block at the right end.

 

Or

 

    1125344743766111...111947742

 

where the number of 1's in the middle is odd.  This forms a MWSS at the

left and a LWSS at the right, which annihilate each other.

 

Or

 

    4147297575111...11153

 

with at least 4 1's.  This forms a MWSS at the left (on a different path

from the one above) which destroys a boat at the right end.

 

By the way, in your original message about this subject, you listed some

numbers whose patterns die:

 

    8,10,14,18,20,31,48,50,81,83,87,88,101,118,122,127,144,148,155,161,

    174,181,188,191,199

 

You missed 11 and 157.  Of the 505 numbers up to 10000 which die, the

one that takes the longest is 1048, which dies in 201 gens.

 

Dean Hickerson

 

L’illu ci-dessus est désormais bonne, j’ai corrigé la suite des nombres-qui-meurent selon l’indication de Dean.]

 

Je vous encourage à entrer dans l’applet ce nombre-ci, qu’il a trouvé :

 

1125344743766111111111111111111111111111947742 (il y a 27 « 1 » qui forment bloc -- il pourrait y en avoir 29, ou 31, ou 33...)

 

La façon qu’à ce nombre de s’autodétruire est magnifique !

 

[À suivre encore ?]

 

----------------

 

[Oui ! Je reçois ceci de Dean ce matin, 20 février 2007 – c’est toujours passionnant (notamment les questions irrésolues du Jeu de la Vie qu’il mentionne et que j’ai balisées d’une flèche « --> ») ; je commence par lui dire que les nombres sont simples à expédier par courriel] :

 

>> The good thing with this is that *numbers* are easy

>> to post and to reproduce in an applet.

 

True, but for any really serious Life experiments you need a faster

program, which can read and write patterns. Then you can run some of the

larger patterns that people have built, like the ones on my Life page:

 

    http://www.math.ucdavis.edu/~dean/life.html

 

>> Doesn't the Game of Life "sleep" a bit nowadays?

 

There are still several people who are active in Life. Most of us have

other things that keep us busy, so activity is sporadic. (...)

You can see some of the recent results on H. Koenig's blog:

 

    http://pentadecathlon.com/lifeNews/index.php

 

>> This would wake a few people up, I guess!

 

Maybe. But, although your number patterns provide some fun puzzles, and

I've enjoyed playing around with them for a while, they're not really

relevant to the big questions in Life, like:

 

--> What oscillator periods are possible? (Currently we have examples of

    all periods except 19, 23, 31, 34, 37, 38, 41, 43, 51, and 53.) See

    Jason Summers's Game of Life Status page:

 

        http://entropymine.com/jason/life/status.html

 

--> What spaceship velocities are possible? (Currently known:

    orthogonal c/2, c/3, c/4, c/5, 2c/5, c/6, 2c/7, 17c/45;

    diagonal c/4, c/5, c/6, c/12) See Jason's page for this also.

 

--> What growth rates can we construct? (Currently known includes

    population in gen t asymptotic to a constant times t^r for any

    rational number r with 1 <= r <= 2. Also for r = 1/(2^k) with k>=0,

    r = (k-1)/k with k>=1, and r = 1/3. Also log(t), t log(t),

    log(t)^2, t log(t)^2. (I'm sure I've forgotten some.)

 

--> Is there a pattern which has a parent but no grandparent? (I.e.

    it can occur in gen 1 of something, but not in gen 2.) Conway

    offered $50 for this back around 1970, but it's still unanswered.

 

--> Can all still-lifes and oscillators be constructed by crashing

    gliders together? See Mark Niemiec's Life Page:

 

        http://home.interserv.com/~mniemiec/lifepage.htm

 

--> What is the ultimate fate of an infinite random pattern? Does it

    fill up with an ecosystem of competing self-replicators? What is

    its limiting density (if it has one)?

 

(...)

Here are the numbers up to 1000:

 

    8 10 11 14 18 20 31 48 50 81 83 87 88 101 118 122 127 144 148 155 157

    161 174 181 188 191 199 202 205 206 208 218 221 222 228 245 247 248 274

    278 284 285 295 302 304 305 308 309 312 313 315 323 327 331 342 349 353

    397 414 418 428 472 481 488 502 505 508 518 527 551 555 558 562 582 629

    639 660 661 706 714 726 727 746 751 753 758 759 772 777 796 802 805 811

    812 814 815 818 822 823 853 855 872 881 902 906 916 917 923 947 956 971

 

>> Thanks again, Dean, my right thumb is almost dead (entering

>> the applet lots of numbers via the mouse!)

 

If you switch to a Life program that can read and write pattern files

in RLE notation (the most common one used for exchanging patterns),

then you won't have to use the mouse so much.

 

>> wouldn't it be interesting to find the smallest integer producing:

>> 

>> - a pure glider

...

 

Here, I think, are the smallest numbers which produce some of the small,

named objects. In some cases there are smaller numbers that produce these

along with other things, but these are probably the smallest that produce

just a single object. (I only checked patterns that finish within 2000 gens.

It's possible that there are smaller numbers which produce single objects

after more than 2000 gens, but it's unlikely; patterns that last that long

are usually large and messy.)

 

    aircraft carrier      186176

    bakery                1672

    barge                 243

    beacon (p2)           3671

    beehive               163

    blinker (p2)          29

    block                 70

    boat                  24

    clock (p2)            unknown

    eater                 1415073803975114

    fleet                 7108

    glider                90

    honey farm            78

 

    HWSS                  unknown

    LWSS                  3207

    MWSS                  94174

 

    infinite grow         154299

    loaf                  60

    long barge            unknown

    long boat             587

    long ship             unknown

    long snake            unknown

    mango                 857

    oscillator (p15)      1445481003304129144171771

    pond                  36

    pulsar (p3)           0

    ship                  516

    snake                 unknown

    still life            180010010081

    toad (p2)             8696

    traffic light (p2)    1

    tub                   3906

 

 

In case you switch to a program that can read RLE files, here's a pattern

containing the numbers listed above:

 

#C Smallest numbers which produce some small named objects

x = 19, y = 1225, rule = B3/S23

3ob3o$2bobobo$3ob3o$o5bo$3ob3o57$3ob3o$2bobobo$2bobobo$2bobobo$2bob3o

57$3ob3ob3ob3o$2bobobobobobo$3ob3obobob3o$2bo3bobobobobo$3ob3ob3ob3o

57$3obobo$2bobobo$3ob3o$o5bo$3o3bo57$ob3ob3o$obo5bo$ob3ob3o$obobo3bo$o

b3ob3o57$3obob3o$o3bobo$3obob3o$2bobobobo$3obob3o57$3obobob3o$2bobobo

3bo$3ob3ob3o$o5bo3bo$3o3bob3o57$3ob3ob3ob3o$obobo3bobobo$3ob3ob3ob3o$o

bobobo3bobobo$3ob3ob3ob3o57$3ob3ob3obo$2bobo5bobo$3ob3o3bobo$2bobobo3b

obo$3ob3o3bobo57$ob3ob3obob3ob3o$obobobo3bo3bobo$ob3ob3obo3bob3o$obobo

bobobo3bobobo$ob3ob3obo3bob3o57$3ob3o$o3bobo$3obobo$obobobo$3ob3o57$3o

b3ob3o$o3bobo3bo$3ob3o3bo$2bobobo3bo$3ob3o3bo57$3ob3o$2bobo$3ob3o$2bob

obo$3ob3o57$3ob3ob3o$obobo5bo$3ob3o3bo$obo3bo3bo$3ob3o3bo57$obob3o$obo

bobo$obobobo$obobobo$obob3o57$o$o$o$o$o57$3ob3o$2bobobo$2bob3o$2bobobo

$2bob3o57$3obob3ob3o$2bobobobobobo$2bobobobob3o$2bobobobobobo$2bobob3o

b3o57$3ob3o$obobobo$3obobo$2bobobo$3ob3o57$3ob3ob3ob3o$2bo3bobobo3bo$

3ob3obobo3bo$2bobo3bobo3bo$3ob3ob3o3bo57$3obobobob3obobo$obobobobo3bob

obo$3ob3obo3bob3o$2bo3bobo3bo3bo$3o3bobo3bo3bo!

 

Dean Hickerson

 

 

Le tableau des « small objects » évoqués par Dean sera mis à jour régulièrement, au fil des améliorations trouvées. La maison se permet de recommander l’injection du nombre 154299 dans le Jeu de la Vie, produisant une expansion infinie de toute beauté (illustrée ci-dessous) :

 

[Dean] :

I've found a number that produces infinite growth: 154299. I believe

it's the smallest such number. In gen 539 it produces a Corderman switch

engine (along with a lot of other junk) which travels southeast, leaving

behind 4 blocks every 48 gens.

 

 

Quelle merveille, bravo Dean !

 

Voici un dictionnaire (en langue anglaise) qui permet de comprendre en quoi consistent « small objects » et autres configurations :

http://www.bitstorm.org/gameoflife/lexicon/

 

L’applet que nous utilisons le plus est toujours là :

http://www.math.com/students/wonders/life/life.html

 

 

 

Retour à la page d’accueil du site,