n = (MAXd+MINd)/2

 

Hello SeqFans,

 

Let’s start with n = 723810.

 

We read n from left to right, digit by digit, in this way:

 

7 says: replace me by the biggest of the 7 digits on my right (including me)

        Then 7 is replaced by 8 --> n = 823810

 

2 says: replace me by the biggest of the 2 digits on my right (including me)

        Then 2 is replaced by 3 --> n = 833810

 

3 says: replace me by the biggest of the 3 digits on my right (including me)

        Then 3 is replaced by 8 --> n = 838810

 

8 says: replace me by the biggest of the 8 digits on my right (including me)

        Then 8 is replaced by 8 --> n = 838810

 

1 says: replace me by the biggest of the 1 digit(s) on my right (including me)

        Then 1 is replaced by 1 --> n = 838810

 

0 says: replace me by the biggest of the 0 digit(s) on my right (including me)

        Then 0 is replaced by nothing and disappears --> n = 83881

 

So n = 723810 becomes 83881. This result is called MAXd (maximum digit)

 

The MINd (minimum digit) operation works in the same way (just replace "biggest" by "smallest", above).

 

We then get for n: 723810 --> 02101 which is 2101.

 

We will now transform n into n’:

 

n’ = (MAXd+MINd)/2

 

For n = 723810 we have n’ = (83881+2101)/2 = 42991

 

We could then iterate from there. But we will see first what happens with n = 1234 and present the iteration like this:

 

 / MAXd          / MAXd

n  MAXd+MINd = n’  MAXd’+MINd’ = n", etc.

 \ MINd          \ MINd

 

    /1344       /1899       /1994       /1919       /1919

1234 2578 = 1289 3188 = 1594 3438 = 1719 3038 = 1519 3038 = 1519

    \1234       \1289       \1444       \1119       \1119

 

 

... we see that 1519 is a fixed point.

 

What would be S, the "fixed-points" sequence of (MAXd+MINd)/2?

 

S starts, I think, like this:

 

S = 1,2,3,4,5,6,7,8,9,11,12,13,14,15,16,17,18,19,22, ...

 

Could we have (MAXd+MINd) = odd number? Yes, in a (very) few cases:

 

  /3

30 3 = 1,5

  \0

 

If so, the iteration stops as "impossible".

 

Best,

É.

 

__________

 

Douglas McNeil:

 

> S = 1,2,3,4,5,6,7,8,9,11,12,13,14,15,16,17,18,19,22, ...

 

Agreed: I find

 

sage: S

[1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 12, 13, 14, 15, 16, 17, 18, 19, 22, 33, 44, 55, 66, 77, 88, 99, 111, 112, 113, 114, 115, 116, 117, 118, 119, 122, 133, 144, 155, 166, 177, 188, 199, 222, 315, 333, 417, 444, 519, 555, 666, 777, 888, 999, 1111, 1112, 1113, 1114, 1115, 1116, 1117, 1118, 1119, 1122, 1133, 1144, 1155, 1166, 1177, 1188, 1199, 1222, 1315, 1333, 1417, 1444, 1519, 1555, 1666, 1777, 1888, 1999, 2222, 3155, 3333, 3519, 4117, 4177, 4417, 4444, 5119, 5199, 5519, 5555, 6666, 7777, 8888, 9999]

 

> Could we have (MAXd+MINd) = odd number? Yes, in a (very) few cases:

 

Not so rare-- I think any multiple of 10 with a last nonzero digit being 3,5,7, or 9 will produce an odd number.

 

sage: O[:100]

[30, 50, 70, 90, 130, 150, 170, 190, 230, 250, 270, 290, 300, 330, 350, 370, 390, 430, 450, 470, 490, 500, 530, 550, 570, 590, 630, 650, 670, 690, 700, 730, 750, 770, 790, 830, 850, 870, 890, 900, 930, 950, 970, 990, 1030, 1050, 1070, 1090, 1130, 1150, 1170, 1190, 1230, 1250, 1270, 1290, 1300, 1330, 1350, 1370, 1390, 1430, 1450, 1470, 1490, 1500, 1530, 1550, 1570, 1590, 1630, 1650, 1670, 1690, 1700, 1730, 1750, 1770, 1790, 1830, 1850, 1870, 1890, 1900, 1930, 1950, 1970, 1990, 2030, 2050, 2070, 2090, 2130, 2150, 2170, 2190, 2230, 2250, 2270, 2290]

 

__________

 

Maximilian Hasler:

 

Je trouve pour les points fixes :

 

S =

1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 12, 13, 14, 15, 16, 17, 18, 19, 22, 33, 44, 55, 66, 77, 88, 99, 111, 112, 113, 114, 115, 116, 117, 118, 119, 122, 133, 144, 155, 166, 177, 188, 199, 222, 315, 333, 417, 444, 519, 555, 666, 777, 888, 999, 1111, 1112, 1113, 1114, 1115, 1116, 1117, 1118, 1119, 1122, 1133, 1144, 1155, 1166, 1177, 1188, 1199, 1222, 1315, 1333, 1417, 1444, 1519, 1555, 1666, 1777, 1888, 1999, 2222, 3155, 3333, 3519, 4117, 4177, 4417, 4444, 5119, 5199, 5519, 5555, 6666, 7777, 8888, 9999, 11111, 11112, 11113, 11114, 11115, 11116, 11117, 11118, 11119, 11122, 11133, 11144, 11155, 11166, 11177, 11188, 11199, 11222, 1315, 11333, 11417, 11444, 11519, 11555, 11666, 11777, 11888, 11999, 12222, 13155, 13333, 13519, 14117, 14177, 14417, 14444, 15119, 15199, 15519, 15555, 16666, 17777, 18888, 19999, 22222, 31519, 31555, 33333, 35119, 35199, 41177, 41777, 44177, 44444, 51119, 51199, 51519, 51999, 53519, 55119, 55199, 55519, 55555, 66666, 77777, 88888, 99999, ...

 

... et pour les archives, le code :

 

MAXd(n)={ for(i=1,#n=Vecsmall(Str(n)), if( n[i]>48, for(j=i+1,min(#n,i+n[i]-49),

 n[j]>n[i] & n[i]=n[j]), n[i]=32)); eval(Strchr(n)) }

 

MINd(n)={ for(i=1,#n=Vecsmall(Str(n)), if( n[i]>48, for(j=i+1,min(#n,i+n[i]-49),

 n[j]<n[i] & n[i]=n[j]), n[i]=32)); eval(Strchr(n)) }

 

EA(n)=(MAXd(n)+MINd(n))/2

 

for(n=1,99999,EA(n)==n & print1(n", "))

 

__________

 

Jean-Marc Falcoz:

 

(...)

J’ai regardé ce que donnait la suite en allant jusqu’à 20 000 000 :

 

{1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 12, 13, 14, 15, 16, 17, 18, 19, 22, 33, 44, 55, 66, 77, 88, 99, 111, 112, 113, 114, 115, 116, 117, 118, 119, 122, 133, 144, 155, 166, 177, 188, 199, 222, 315, 333, 417, 444, 519, 555, 666, 777, 888, 999, 1111, 1112, 1113, 1114, 1115, 1116, 1117, 1118, 1119, 1122, 1133, 1144, 1155, 1166, 1177, 1188, 1199, 1222, 1315, 1333, 1417, 1444, 1519, 1555, 1666, 1777, 1888, 1999, 2222, 3155, 3333, 3519, 4117, 4177, 4417, 4444, 5119, 5199, 5519, 5555, 6666, 7777, 8888, 9999, 11111, 11112, 11113, 11114, 11115, 11116, 11117, 11118, 11119, 11122, 11133, 11144, 11155, 11166, 11177, 11188, 11199, 11222, 11315, 11333, 11417, 11444, 11519, 11555, 11666, 11777, 11888, 11999, 12222, 13155, 13333, 13519, 14117, 14177, 14417, 14444, 15119, 15199, 15519, 15555, 16666, 17777, 18888, 19999, 22222, 31519, 31555, 33333, 35119, 35199, 41177, 41777, 44177, 44444, 51119, 51199, 51519, 51999, 53519, 55119, 55199, 55519, 55555, 66666, 77777, 88888, 99999, 111111, 111112, 111113, 111114, 111115, 111116, 111117, 111118, 111119, 111122, 111133, 111144, 111155, 111166, 111177, 111188, 111199, 111222, 111315, 111333, 111417, 111444, 111519, 111555, 111666, 111777, 111888, 111999, 112222, 113155, 113333, 113519, 114117, 114177, 114417, 114444, 115119, 115199, 115519, 115555, 116666, 117777, 118888, 119999, 122222, 131519, 131555, 133333, 135119, 135199, 141177, 141777, 144177, 144444, 151119, 151199, 151519, 151999, 153519, 155119, 155199, 155519, 155555, 166666, 177777, 188888, 199999, 222222, 315119, 315199, 315519, 315555, 333333, 351119, 351199, 351519, 351999, 411777, 417777, 441777, 444444, 453519, 511199, 511999, 515199, 519999, 535199, 551199, 551999, 555199, 555555, 666666, 777777, 888888, 999999, 1111111, 1111112, 1111113, 1111114, 1111115, 1111116, 1111117, 1111118, 1111119, 1111122, 1111133, 1111144, 1111155, 1111166, 1111177, 1111188, 1111199, 1111222, 1111315, 1111333, 1111417, 1111444, 1111519, 1111555, 1111666, 1111777, 1111888, 1111999, 1112222, 1113155, 1113333, 1113519, 1114117, 1114177, 1114417, 1114444, 1115119, 1115199, 1115519, 1115555, 1116666, 1117777, 1118888, 1119999, 1122222, 1131519, 1131555, 1133333, 1135119, 1135199, 1141177, 1141777, 1144177, 1144444, 1151119, 1151199, 1151519, 1151999, 1153519, 1155119, 1155199, 1155519, 1155555, 1166666, 1177777, 1188888, 1199999, 1222222, 1315119, 1315199, 1315519, 1315555, 1333333, 1351119, 1351199, 1351519, 1351999, 1411777, 1417777, 1441777, 1444444, 1453519, 1511199, 1511999, 1515199, 1519999, 1535199, 1551199, 1551999, 1555199, 1555555, 1666666, 1777777, 1888888, 1999999, 2222222, 3151119, 3151199, 3151519, 3151999, 3153519, 3155119, 3155199, 3155519, 3155555, 3333333, 3511199, 3511999, 3515199, 3519999, 4117777, 4177777, 4417777, 4444444, 4453519, 4535199, 5111999, 5119999, 5151999, 5199999, 5351999, 5511999, 5519999, 5551999, 5555555, 6666666, 7777777, 8888888, 9999999, 11111111, 11111112, 11111113, 11111114, 11111115, 11111116, 11111117, 11111118, 11111119, 11111122, 11111133, 11111144, 11111155, 11111166, 11111177, 11111188, 11111199, 11111222, 11111315, 11111333, 11111417, 11111444, 11111519, 11111555, 11111666, 11111777, 11111888, 11111999, 11112222, 11113155, 11113333, 11113519, 11114117, 11114177, 11114417, 11114444, 11115119, 11115199, 11115519, 11115555, 11116666, 11117777, 11118888, 11119999, 11122222, 11131519, 11131555, 11133333, 11135119, 11135199, 11141177, 11141777, 11144177, 11144444, 11151119, 11151199, 11151519, 11151999, 11153519, 11155119, 11155199, 11155519, 11155555, 11166666, 11177777, 11188888, 11199999, 11222222, 11315119, 11315199, 11315519, 11315555, 11333333, 11351119, 11351199, 11351519, 11351999, 11411777, 11417777, 11441777, 11444444, 11453519, 11511199, 11511999, 11515199, 11519999, 11535199, 11551199, 11551999, 11555199, 11555555, 11666666, 11777777, 11888888, 11999999, 12222222, 13151119, 13151199, 13151519, 13151999, 13153519, 13155119, 13155199, 13155519, 13155555, 13333333, 13511199, 13511999, 13515199, 13519999, 14117777, 14177777, 14417777, 14444444, 14453519, 14535199, 15111999, 15119999, 15151999, 15199999, 15351999, 15511999, 15519999, 15551999, 15555555, 16666666, 17777777, 18888888, 19999999}

 

Si l’on ne s’occupe que de la liste de tous les chiffres obtenus, on voit qu’on a une suite quasi fractale, certains nombres ont une trajectoire évidente avant de se stabiliser :

 

4

14

144

1444

etc.

 

Pour d’autres c’est un peu moins évident :

 

9

19

519

3519

53519

453519

4453519

14453519

114453519

1114453519

11114453519

etc.

 

Vraiment étrange !

 

Entre 10^j et 10^(j+1) , on garde les mêmes nombres en rajoutant un 1 devant, mais on a aussi de nouvelles branches qui se créent, par ex. 151999 donne naissance à 1151999, mais aussi à 5151999

 

ou encore, quand on examine dans la suite les nombres ne contenant que des 1, des 4 et des 7 (par exemple) :

 

 417

 1417

 4117

 4177

 4417

 11417

 14117

 14177

 14417

 41177

 41777

 44177

 111417

 114117

 114177

 114417

 141177

 141777

 144177

 411777

 417777

 441777

 1111417

 1114117

 1114177

 1114417

 1141177

 1141777

 1144177

 1411777

 1417777

 1441777

 4117777

 4177777

 4417777

 11111417

 11114117

 11114177

 11114417

 11141177

 11141777

 11144177

 11411777

 11417777

 11441777

 14117777

 14177777

 14417777

 ...

on voit que les branches se développent régulièrement, mais créent aussi des rejetons !

 

Pour visualiser le côté "fractal perturbé" de cette suite, j’ai dessiné la trajectoire correspondant aux chiffres composant la suite des nombres, c’est à dire :

 

1, 2, 3, 4, 5, 6, 7, 8, 9, 1, 1, 1, 2, 1, 3, 1, 4, 1, 5, 1, 6, 1, 7, 1, 8, 1, 9, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7, 8, 8, 9, 9, 1, 1, 1, 1, 1, 2, 1, 1, 3, 1, 1, 4, 1, 1, 5, 1, 1, 6, 1, 1, 7, 1, 1, 8, 1, 1, 9, 1, 2, 2, 1, 3, 3, 1, 4, 4, 1, 5, 5, 1, 6, 6, 1, 7, 7, 1, 8, 8, 1, 9, 9, 2, 2, 2, 3, 1, 5, 3, 3, 3, 4, 1, 7, 4, 4, 4, 5, 1, 9, 5, 5, 5, 6, 6, 6, 7, 7, 7, 8, 8, 8, 9, 9, 9, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 3, 1, 1, 1, 4, 1, 1, 1, 5, 1, 1, 1, 6...

 

en assignant une direction à chaque chiffre (1=40°, 2=80°, etc.) On voit que cette suite forme un motif qui se répète en se déformant peu à peu :

 

 

max1200

 

Magnifique, Jean-Marc, on voit bien ci-dessus le petit train de vagues qui monte et grossit !

Thanks to all contributors,

Best,

É.

P.-S. this is now http://oeis.org/A173646